

Considerations When Performing Icing Wind Tunnel Testing to Determine Critical Temperature

John Severson Sensor Systems Goodrich Corporation

SAE International FAA In-flight / Ground Deicing International Conference

June 18, 2003

Definition of Critical Temperature

- Critical temperature is the temperature above which ice will no longer accrete on a surface
- Critical temperature is usually expressed in terms of static air temperature, but total temperature can also be used

Significant Factors that Influence Critical Temperature

- Airspeed
- Accreting body surface geometry
- Liquid water content
- Accreting body thermal properties

Why Critical Temperature is of Interest

Might critical temperatures experienced by accretion-based ice detectors be appreciably different from those experienced at aircraft surfaces?

Accretion-based ice detector

Quantifying the Gap

- Limited testing and anecdotal information suggest that any gap is small.... on the same order, or less, as the measurement uncertainty for tools available to determine critical temperature
 - Tools include icing wind tunnels and analytical codes

Quantifying the Gap

- Therefore, capability of current tools to accurately characterize critical temperature falls short of ideal
- Icing wind tunnels are perhaps the best tool available today

Icing Wind Tunnel Schematic

Icing Wind Tunnel Error Sources

- Primary contributors to uncertainty when determining critical temperature:
 - Temperature non-uniformity
 - Temperature standard accuracy
 - Ability to determine the onset of icing
 - Tunnel & test article thermal history
- Contributors are facility and test dependent

Icing Wind Tunnel Error Sources

Estimated contributions to uncertainty:

	Error, ± °C
Temperature non-uniformity	1.0
Temperature standard accuracy	0.5
Determination of icing onset	0.3
Tunnel & test article thermal history	0.2
Other minor contributors	<u>0.3</u>
RS	S: 1.2°C

Minimizing Errors

- Locate test articles where temperature is most uniform
- Be consistent in test method
- Scrutinize the calibration of temperature and temperature standards
- Observe surface temperature instrumentation response closely for evidence of icing onset
- Proceed slowly; seal leaks into test article cavities and passages

Assessing Tunnel Test Results

- Establish uncertainty levels for the test, and consider measured critical temperature values in the context of measurement uncertainty.
- Consider tunnel test findings in the context of:
 - local aircraft icing conditions as influenced by aircraft geometry
 - real world transients due to changes in atmospheric conditions, aircraft attitude, & altitude

Summary

- Critical temperature is the temperature above which ice will no longer accrete on a surface
- Differences in critical temperature between surfaces are generally believed to be small.... on the order of the uncertainty of the measurement tools currently available
- Uncertainty in critical temperature measurements determined using icing wind tunnels is on the order of ±1°C to 1.5°C
- Consider test results in the context of measurement uncertainty